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Abstract. Systems driven by Poisson-distributed quantal inputs can be described as “shot noise” stochastic
processes. This formalism can apply to neurons which receive a large number of Poisson-distributed synaptic
inputs of similar quantal size. However, the presence of temporal correlations between these inputs destroys
their quantal nature, and such systems can no longer be described by classical shot noise processes. Here,
we show that explicit expressions for various statistical properties, such as the amplitude distribution and
the power spectral density, can be deduced and investigated as functions of the correlation between input
channels. The monotonic behavior of these expressions allows an one-to-one relation between temporal
correlations and the statistics of fluctuations. Multi-channel shot noise processes, therefore, open a way
to deduce correlations in input patterns by analyzing fluctuations in experimental systems. We discuss
applications such as detecting correlations in networks of neurons from intracellular recordings of single
neurons.

PACS. 87.10.+e General theory and mathematical aspects – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion – 02.50.Ey Stochastic processes – 02.50.-r Probability theory,
stochastic processes, and statistics

1 Introduction

With first reports dating back to the beginning of the
last century [1], the effect originally termed “Schrotef-
fekt” [2] describes spontaneous time-dependent current
fluctuations in electric conductors. Such fluctuations, now
well-known under the term shot noise [3], do have their
origin in the quantum mechanical properties of electrons,
specifically the discreteness of the electric charge. In con-
trast to thermal (Johnson-Nyquist) noise [4], the appear-
ance of shot noise is inevitably linked to non-equilibrium
states of the system in question.

The inherent quantum nature of shot noise processes
led to a generalization of its definition, which describes
shot noise as the output s(t) of a dynamical system acti-
vated by a sequence z(t) of singular impulses occurring at
random times ti, s(t) =

∑
i h(t − ti) [5] (Fig. 1A). Here,

h(t) denotes the quantal impulse response elicited for each
event ti. In mathematical terms, shot noise processes are
strict-sense stationary stochastic processes, i.e. their sta-
tistical properties are invariant to shifts in time, for which
s(t) can be represented as the output of a linear system
with quantal impulse response h(t) and random impulse
input z(t) =

∑
i δ(t−ti). In general, z(t) is assumed to be a
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Fig. 1. Shot noise process for single (A), multiple uncorrelated
(B) and multiple correlated (C) input channels. The output
s(t) of the dynamical system equals the sum of the quantal re-
sponses h(t) triggered by the arrival of a sequence of impulses
z(t) occurring at random times according to a Poisson distri-
bution. Whereas s(t) triggered by multiple but uncorrelated
channels (B) can be described by a single channel with high
rate, the output differs when temporal correlations (C, left,
grey bars) are introduced. Parameters: N = 1, λ = 100 Hz
(A); N = 100, λ = 50 Hz, c = 0 (B); c = 0.7 (C); h0 = 1,
τ = 2 ms in all cases.



126 The European Physical Journal B

Poisson process of constant rate [3,6], but also cases con-
sidering underlying Poisson processes with time-varying
rate [7], filtered Poisson processes [8] or Gaussian noise [9]
were investigated.

With this generalization, (quantum) shot noise
processes have emerged as a theoretical basis for the
explanation of a variety of phenomena. These include,
most notably, electronic transport phenomena in meso-
scopic systems [11], such as the Aharonov-Bohm effect,
the quantum Hall effect [10], superconductivity [12], or the
kinetics of entangled and spin-polarized electrons [13]. Ef-
fects like the diffusion of concentration packets, a specific
example of which is synaptic transmission between neu-
rons, are accessible in the framework of power-law or frac-
tal shot noise processes [14,18]. The theory of shot noise
processes even found extensions to (quantum) optics [15],
risk [16], telecommunication and traffic theory [17].

Campbell’s theorem [1,3] provides explicit expressions
for the first and second cumulants (mean and variance, re-
spectively) of single-channel Poisson-driven shot noise pro-
cesses with integrable response functions h(t). However,
in many situations, e.g. synaptic transmission in neural
systems, the response is triggered by multiple input chan-
nels zi(t). Whereas for N independent input channels with
rate λ (Fig. 1B) the resulting output s(t) is equivalent
to a single channel driven by a Poisson process of higher
rate λN , this generalization is no longer valid in the pres-
ence of temporal correlations between the multiple input
channels (Fig. 1C). In this paper, we apply Campbell’s
theorem to situations of multiple and temporally corre-
lated input channels, and provide explicit expressions for
various statistical measures, which will allow to character-
ize the quantal impulse response and input statistics from
the sole knowledge of the system’s output. We discuss ap-
plications of this formalism to model synaptic activity in
neurons.

2 Correlated input channels
and generalization of Campbell’s theorem

Temporal correlation among the multiple input channels
was introduced using a distributed generator algorithm
(Fig. 2A), which was originally proposed to model corre-
lations among multiple synapses in neurons [19]. At each
time step t0, the activity in channel i = 1, . . . , N (set {B})
is selected independently and uniformly from one of N0 in-
dependent Poisson trains (set {A}), each of rate λ. N0 and
N are linked through N0 = N +

√
c(1−N), 0 ≤ c ≤ 1, thus

introducing a correlation measure c. The probability that
an event of set {A} will be redistributed across k events
in set {B}, follows a binomial distribution

ρk(N, N0) =
(

N
k

) (
1

N0

)k (

1 − 1
N0

)N−k

, (1)

k = 0, . . . , N . Here, 1/N0 emerges as the ratio between
the average number of uniform random assignments of
events in {A} to events in {B} (N/N0, equaling the

Fig. 2. Temporal correlation in the multiple input channels
was introduced using a distributed generator algorithm (A), in
which, at each time t0, the activity pattern {A} of N0 inde-
pendent channels was redistributed among N input channels
(set {B}). The mean s shows a linear dependence on N and λ,
and is independent on c. The variance σ2

s is linear in λ (B,
left, grey) but depends nonlinearly on the number of input
channels N (B, left, black) and correlation c (B, right) of the
multi-channel inputs. Dashed lines show the asymptotic values
of σ2

s for N → ∞ in the case of c = 0 and c = 1.

average number of events in {B} assigned to each ele-
ment of {A}) and the total number N of events in {B}.
The mean number of random assignments is given by
k =

∑N
k=0 ρk(N, N0)k = N/N0, which equals the aver-

age number of times each event of set {A} is redistributed
among elements of {B}. Equivalently, the variance of ran-
dom assignments is given by σ2

k = N(N0 − 1)/N2
0 . Fur-

thermore, it can be shown that this correlated activity
has an instantaneous pairwise correlation coefficient of
1/N0 = 1/(N +

√
c(1 − N)) (see also Ref. [20]).

In order to apply Campbell’s theorem in the case of
multiple correlated input channels as described above, we
construct a new shot noise process based on the following
two assumptions: first, the time course of k co-releasing
identical quantal events hk(t) equals the sum of k quantal
time courses: hk(t) = kh1(t), h1(t) ≡ h(t). Second, the
output s(t) due to N correlated Poisson processes equals
the sum over the time course of k (k = 0, . . . , N) co-
releasing identical quantal events stemming from N0 in-
dependent Poisson trains. For each of the N0 independent
Poisson trains, this sum is weighted according to a bino-
mial distribution (Eq. (1)). Mathematically, this process
is equivalent to a shot noise process s(t) =

∑
j Ajh(t− tj)

with amplitude Aj given by an independent random
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variable taking values k = 0, . . . , N with the distribution
given in equation (1), and tj arising from a Poisson process
with rate N0λ.

With this, the mean s and variance σ2
s of multiple cor-

related shot noise processes are given by

s = λN0

N∑

k=0

ρk(N, N0)

∞∫

−∞
dthk(t), (2)

σ2
s = λN0

N∑

k=0

ρk(N, N0)

∞∫

−∞
dthk(t)2. (3)

3 Statistical characterization of multichannel
shot noise systems

In order to investigate in detail the impact of correlation
in the multi-channel inputs, we considered the example of
an exponential quantal response function h(t) = h0e

−t/τ ,
t ≥ 0 (h(t) ≡ 0, t < 0), where τ denotes the time constant
and h0 the maximal response for each channel. With this,
the cumulants Cn, n ≥ 1, of a multi-channel shot noise
process read

Cn := λN0

N∑

k=0

ρk(N, N0)

∞∫

−∞
hn

k (t)dt (4)

=
λτhn

0

n

N∑

k=0

(
N
k

)

kn ((N − 1)(1 −√
c))N−k

(N +
√

c(1 − N))N−1
.

In particular, the mean and variance (C1 and C2, respec-
tively) are given by:

s = λNh0τ , (5)

σ2
s =

1
2

λNh2
0τ

(

1 +
N − 1

N +
√

c (1 − N)

)

. (6)

The method for introducing temporal correlation in the
multi-channel input pattern preserves the total release
rate λN . This directly translates into the independence
of the mean on the correlation measure c, whereas s is
linearly dependent on λ and N (Fig. 2B). The variance
σ2

s shows a monotonic but nonlinear dependence on c and
N , being proportional to λN(1 + N−1

N+
√

c (1−N)
). For van-

ishing correlation (c = 0), σ2
s approaches a value propor-

tional to 2λN for large N . Note that for zero correlation
the system is still equivalent to a shot noise process of
rate λN = λN0, as can be inferred from the mean s, but a
factor 2λN resulting from the used shuffling algorithm en-
ters now the variance σ2

s . On the other hand, for maximal
correlation (c = 1), there is only one independent input
channel, in which case σ2

s ∼ λN2 (Fig. 2B). The analytic
values for s and σ2

s were compared with corresponding
results from numerical simulations, and showed an excel-
lent agreement in the whole investigated parameter range
(100 ≤ N ≤ 10,000; 0.1 ≤ λ ≤ 5 Hz; 0 ≤ c ≤ 1; relative
error <1% due to limited numerical statistics).

Although equations (5) and (6) describes the func-
tional dependence of the mean s and variance σ2

s for a sys-
tem with exponential response functions triggered by cor-
related multi-channel shot noise processes, equations (2)
and (3) are general expressions which can be applied to
other response function and notions of correlation among
multiple inputs as well. Indeed, the mean (or variance) of a
systems output is calculated as finite weighted sums of in-
tegrals over quantal response functions (or their squared)
which describe the response triggered by a correlated in-
puts. Whereas this integral only depends on the kinetics of
the response elicited by co-releasing events, the weighting
factor only depends on the input statistics, in particular
the strength of correlation. For a strictly monotonic de-
pendence between the number of co-releasing events and
the resulting response, e.g. an increase in the quantal am-
plitude with the number of triggering correlated inputs,
s and σ2

s will always show a strictly monotonic depen-
dence on the correlation c. The advantage of the chosen
exponential response and notion of correlation is that the
integral over the release kinetics, and sum over the in-
put statistics can be performed explicitly. In addition, for
many processes in nature, such as for instance synaptic
transmission, an exponential response function provides a
sufficiently good approximation.

Equations (5) and (6) are sufficient to deduce the
rate λ and correlation c from the lowest order statisti-
cal analysis of the system’s output. However, more infor-
mation about quantal response function and statistics of
the multiple input channels can be obtained from a full
statistical characterization, including the correlation func-
tions and amplitude distribution. The explicit expression
for the correlation function C(t1, t2) and autocorrelation
function C(T ) := C(T, 0) of a multi-channel shot noise
process s(t) is

C(t1, t2) := λN0

N∑

k=0

ρk(N, N0)

∞∫

−∞
hk(t − t1)hk(t − t2)dt

=
1
2
λτh2

0N

(

1 +
N − 1

N +
√

c(1 − N)

)

e
|t2−t1|

τ . (7)

In a similar fashion, the moments Mn, n ≥ 1, of the shot
noise process s(t), defined by Mn =

∫ ∞
−∞ s(t)ndt, can be

deduced, yielding the finite sum

Mn =
n∑

k=1

∑

(n1,...,nk)

n!
k!n1! · · ·nk!

Cn1 · · ·Cnk
, (8)

where the second sum denotes the partition of n into a
sum over k integers ni ≥ 1, 1 ≤ i ≤ k.

From the real part of the Fourier-transform of the mo-
ment generating function

Qs(u) := exp

⎡

⎣−λN0

N∑

k=0

ρk(N, N0)

∞∫

−∞

{
1 − e−uhk(t)

}
dt

⎤

⎦ ,

(9)
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the amplitude probability distribution ρs(h) can be calcu-
lated. A lengthy but straightforward calculation yields

ρs(h) =
1√

2πC2

e
− (C1−h)2

2C2

+
∞∑

m=1

∞∑

k=0

(−2)m−k+1

√
2π k!

Γ [3/2 + m + k]
Γ [1/2 + k]

× (C1 − h)2k

C
3/2+m+k
2

(
C1 − h

1 + 2k
d2m+1 + d2m+2

)

. (10)

Here, dn =
∑[ n

3 ]

k=1

∑
(n1,...,nk)

Cn1 ···Cnk

k!n1!···nk! , where the second
sum runs over all partitions of n into a sum of k terms
ni ≥ 3, 1 ≤ i ≤ [n

3 ], n ≥ 3.
The double infinite sum in equation (10) does not allow

a closed analytic expression for the amplitude distribution
of a correlated multi-channel shot noise process. In lowest
order, ρs(h) takes a symmetric Gaussian form (Fig. 3A,
dashed). At higher orders, a polynomial in h with coef-
ficients given by rational functions of the cumulants is
responsible for corrections leading to an asymmetric dis-
tribution. Considering corrections up to third order in h,
ρs(h) is given by

ρs(h) =
1√

2πC2

e−
(C1−h)2

2C2

×
(

1 − C3(C1 − h)(C2
1 − 3C2 − 2C1h + h2)

6C3
2

)

, (11)

which fits well the real distribution for corresponding pa-
rameter values even for strong asymmetries (Fig. 3A, black
solid). The level of asymmetry increases with decreasing
ratio C1/

√
C2 ≡ s/σs, whereas for λN → ∞ and small c

the distribution takes a nearly Gaussian shape (Fig. 3B).
Finally, the power spectral density of a multi-channel

shot noise process with exponential quantal response func-
tion

Ss(ν) = λN0

N∑

k=0

ρk(N, N0)|Hk(ν)|2 , (12)

where Hk(ν) =
∫ ∞
−∞ hk(t)e−2πiνtdt, is given by

Ss(ν) = λN

(

1 +
N − 1

N +
√

c(1 − N)

)
h2

0τ
2

1 + (2πντ)2
, (13)

and shows a Lorentzian behavior

S(ν) =
2Dτ2

1 + (2πτν)2

(Fig. 4A). Whereas the frequency dependence remains un-
altered by the correlation c, the total rate λ or number of
input channels N , the maximal power is proportional to

D =
1
2
λNh2

0

(

1 +
N − 1

N +
√

c(1 − N)

)

and a nonlinear monotonic function of c and N (Fig. 4B).
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Fig. 3. Amplitude probability distribution for multiple corre-
lated input channels. ρs(h), equation (10), shows a generally
asymmetric behavior (A, grey), which can be approximated by
the lowest order correction (A, black solid) to the correspond-
ing Gaussian distribution (A, black dashed). The amplitude
distribution depends on c and the total rate, and approaches
a Gaussian for high total input rates or small correlations (B).
Parameters: N = 100, λ = 50 Hz, c = 0.7 (A); h0 = 1, τ = 2 ms
in all cases.

Fig. 4. The power spectral density of a shot noise process with
multiple correlated input channels and exponential quantal re-
sponse function shows a Lorentzian behavior (A). The total
power depends on both, the number of input channels N (B,
left, black), rate λ (B, left, grey) and the level of correlation
c (B, right) of the multi-channel inputs. Parameters: h0 = 1,
τ = 2 ms.
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4 Parameter estimation

The relations given in the previous section allow to charac-
terize multi-channel shot noise processes from experimen-
tal recordings. The mean s ≡ C1 and variance σ2

s ≡ C2 of
the amplitude distribution (Eqs. (5) and (6), respectively)
are monotonic functions of c and λ (see Fig. 2B), thus al-
lowing to estimate those parameters from experimentally-
obtained distributions for which s and σ2

s are known. Here,
in order to obtain faithful estimates, the total number of
input channels N as well as the quantal decay time con-
stant and amplitude, τ and h0, respectively, need to be
known. Average values for N can be obtained from de-
tailed morphological studies (see e.g. [24]). Estimates for
the quantal conductance h0 and synaptic time constant
τ can be obtained using whole cell recordings of minia-
ture synaptic events (see e.g. [22]). Average values for the
synaptic time constants are also accessible through fits of
the power spectral density obtained from current-clamp
recordings, as shown in [23,27]. Finally, the explicit ex-
pression for Ss(ν) (Eq. (13)), can be used to fit experimen-
tal power spectral densities obtained from voltage-clamp
recordings, yielding values for the time constant τ and the
power coefficient D.

We tested this paradigm in numerical simulations of
various models of cortical neurons with multiple synaptic
inputs, in which the temporal correlation c and average
release rate at single synaptic terminals λ were changed
in a broad parameter regime. Values for the mean s and
variance σ2

s of excitatory and inhibitory synaptic conduc-
tances can independently be obtained either by using a
voltage-clamp protocol [25], or a protocol which makes
use of current-clamp recordings [26]. Both approaches
yield the same estimates for the mean and variance of
excitatory and inhibitory conductances. In what follows
we, therefore, restrict to conductance estimates obtained
with the voltage-clamp protocol. With values available for
the mean and variance for both excitatory and inhibitory
synaptic conductances, equations (5) and (6) will be uti-
lized to characterize statistical properties, in particular c
and λ, independently for excitatory and inhibitory synap-
tic terminals.

First, we investigated a single-compartment neuronal
models with multiple excitatory and inhibitory synaptic
terminals (Fig. 5). Here, the synaptic conductances from
individual terminals are lumped together and determine
the output of the system. The estimated values for the av-
erage release rate λ matched nearly exact the known input
values for both excitatory and inhibitory synapses (Fig. 5,
top). A good agreement was also obtained for estimates of
the correlation c (Fig. 5, bottom), although a small sys-
tematic underestimation was observed. The latter can be
attributed to statistical limitations of the available con-
ductance estimates (recordings were performed over finite
time with limited temporal resolution) as well as devia-
tions of the conductance distributions from the Gaussian
shape (only in the limit case of infinite input rate the
distributions are expected to be Gaussian; see Eqs. (10)
and (11).

Fig. 5. Estimation of λ (top) and c (bottom) from the char-
acterization of the total conductance distribution for different
levels of network activity in a single-compartment neuronal
model with multiple excitatory (AMPA, N = 4472, quantal
conductance 1.2 nS) and inhibitory (GABA, N = 3801, quan-
tal conductance 0.6 nS) synaptic inputs (inset). Estimated val-
ues are shown as functions of the actual values used for the
numerical simulations. Excellent estimates were obtained for
λ, whereas estimates for c slightly underestimated the actual
value. Neuronal simulations of 100 s duration with time reso-
lution of 0.1 ms were performed.

A qualitatively different result was obtained when
synaptic terminals were distributed over a spatially ex-
tended dendritic tree. In such a biophysical model of a
morphologically reconstructed neuron (Fig. 6, inset), a
marked but systematic underestimation of both the av-
erage release rate (Fig. 6, top) as well as the correlation
between multiple synaptic terminals (Fig. 6, bottom) was
obtained. Further investigation revealed that this under-
estimation of λ and c can be attributed to the attenuation
of synaptic inputs along the spatially extended dendritic
structure. Here, distal synaptic input will have markedly
lower impact on the somatic recording site than more
proximal inputs (Fig. 7A, left), despite the fact that all
synapses had the same quantal conductance and kinetics.

To estimate and characterize this attenuation, “ideal”
voltage-clamp simulations were performed to estimate the
conductance “seen” at the soma for individual excitatory
synaptic events (Fig. 7A, right). The amplitude and in-
tegral of the obtained somatic conductance transients de-
creased with path distance of the synaptic stimulus. As
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Fig. 6. Estimation of the average channel rate λ (top) and
correlation c (bottom) from recorded conductance distribution
for different levels of activity at multiple spatially distributed
excitatory (AMPA, N = 16563, quantal conductance 1.2 nS)
and inhibitory (GABA, N = 3376, quantal conductance 0.6 nS)
synaptic terminals in a detailed biophysical neuronal model of
a morphologically reconstructed cortical neuron (inset). Es-
timated values are shown as functions of the actual values
used for the numerical simulations. In contrast to the single-
compartment model (Fig. 5), dendritic filtering in this multi-
compartment model caused a severe underestimation of λ and
c. Neuronal simulations of 100 s duration with time resolution
of 0.1 ms were performed.

a first approximation incorporating this dendritic filtering
effect, we averaged the conductance contribution from in-
dividual synaptic inputs over the path distance (Fig. 7A,
right bottom, dashed line). This leads to a correction in
the estimation of the rate and correlation (Fig. 7B) so that
estimated values for different levels of network activity,
in particular λ, match now much better with the actual
values used for the numerical simulations. More sophisti-
cated models incorporating dendritic filtering include the
distribution of synapses across the dendritic tree, and are
currently under investigation, also with respect to their
applicability in experiments [27].

The obtained results suggest that, due to the depen-
dencies of the mean and variance of synaptic conduc-
tances, multi-channel shot noise processes open a potential
way to quantitatively assess the frequency (and number;
not shown) of synaptic input channels as well as their
temporal correlation. This would not just allow to charac-

Fig. 7. Estimation of λ (B, top) and c (B, bottom) from
recorded excitatory (AMPA) and inhibitory (GABA) conduc-
tance distribution for different levels of network activity in a
detailed biophysical model of a morphologically reconstructed
cortical neuron (same model as in Fig. 6) under incorporation
of a simple model of dendritic filtering (A; quantal conduc-
tance 12 nS; see text for explanation). This yields an excellent
estimation for the average rate at synaptic terminals, whereas
estimations for c show still a systematic lower value which,
however, is markedly reduced compared to the case without in-
corporating the effect of dendritic filtering. For the estimates,
the same dataset as in Figure 6 was used.

terize the statistical properties of the multisynaptic inputs
to single cells, but also to infer properties of the activity
in the embedding network from recordings of single-cell
activity.

5 Limits of the method and future directions

The method outlined here proposes a characterization of
the statistics of synaptic inputs distributed across a spa-
tially extended dendritic structure. This method should be
viewed as a first step to assess the statistical properties of
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network activity based on the sole knowledge of single-cell
activity. To date, only technically sophisticated multisite
extracellular recordings or imaging allow to quantify net-
work dynamics on a larger scale. The approach presented
here applies to intracellular recordings of single neurons
and could complement such multisite recordings.

However, in order to obtain reliable estimates of net-
work correlation or average rates from intracellular data,
some details need to be resolved which still limit the ap-
plicability of the proposed method. The main limitations
arise from the fact that synaptic inputs are spatially dis-
tributed across an extended dendritic structure. Dendritic
filtering affecting the transmission of signals to the so-
matic recording site, which in general will be spatially
separated from the site of the synaptic inputs, modifies
the signal and, thus, the obtained estimates. This modifi-
cation depends not only on the exact morphology of the
dendritic structure, but also on the distribution of synap-
tic terminals. In the simplest case of a uniform density
and known cellular morphology, good estimates can be
obtained along the lines described in the previous section
(see Fig. 7). However, in most cases the morphology of the
dendritic tree is not known, as is the number of synaptic
terminals and their distribution. Available detailed mor-
phological studies and 3-dimensional cellular reconstruc-
tions can, at least to some extent, reduce those uncertain-
ties.

The value of conductance per synaptic terminal may
vary across the dendritic structure, as found for example
in hippocampal pyramidal neurons whose conductances
are scaled according to their distance to soma to com-
pensate for dendritic filtering [28] (but see [29]; a similar
conductance scaling does not seem to apply to neocortical
neurons [30]). In the case of a functionally known con-
ductance scaling, e.g. a known quantal synaptic conduc-
tances as function of the distance from the soma obtained
by fitting experimental data, both the quantal time course
hk(t) as well as the probability of its occurrence ρk(N, N0)
will not only be a function of the number of co-releasing
terminals k (as well as N and N0), but also the distance
from the somatic recording site. Equations (2)–(4), (7), (9)
and (12) will then contain additional sums (or integrals in
the large N limit) over the location of synaptic terminals.
This approach was used in the previous section to average
over the contribution of synaptic conductances, spatially
distributed with uniform density and of equal quantal am-
plitude, to the activity at the somatic recording site.

Another main limitation concerns the exact nature of
the correlations that are extracted by the present method.
We assumed that correlations are constant in time, that
they are instantaneous (i.e., peaked at time zero), and we
neglected correlations between excitatory and inhibitory
inputs. In reality, temporal correlations are dynamic, they
may occur over finite times, and there may be correlations
between excitatory and inhibitory inputs. The present
method characterizes the “average” correlation and can-
not resolve temporal variations. However, the latter can
be obtained by averaging over successive trials, or by ap-
plying the method within successive time windows. The

number of trials and the temporal signature of the in-
volved biophysical processes, as well as the mathematical
tools utilized for the statistical description of the single
cell activity, will set an upper limit for the temporal reso-
lution with which correlations can be extracted. Reliable
estimates of the mean and variance of synaptic conduc-
tances can be obtained from several thousand recorded
data points, which will yield an upper limit for the tem-
poral resolutions of a few hundred millisecond for single
trials, and tens of milliseconds for multiple trials if stan-
dard electrophysiological recording protocols are used.

Concerning finite-time correlation and excitatory-in-
hibitory correlations, including such effects will neces-
sarily change the functional form of the quantal time
course hk(t) as well as the probability of its occurrence
ρk(N, N0). This type of extension will be the subject
of future work. However, despite those limitations, the
approach described here is a simple and extendable ap-
proach, which highlights the potential usefulness of a nat-
ural extension of the original shot noise formalism.

6 Discussion

We have shown that systems with multiple correlated in-
put channels can be treated within the context of shot
noise stochastic processes, leading to analytic expressions
for the mean and standard deviation of the system’s
stochastic output. In cerebral cortex, every neuron re-
ceives thousands of synaptic inputs from other neurons,
and the seemingly random activity of these inputs causes
large fluctuations of the total membrane conductance [21].
By describing this system as a multi-channel shot noise
process, it should be possible to relate the statistics of con-
ductance fluctuations with the kinetics and the correlation
of synaptic inputs. This procedure could yield methods to
estimate, from single-neuron activity, temporal modula-
tions of correlations among the discharge of a large number
of neurons, which, although of prime physiological impor-
tance, still remains an uncharacterized parameter.

Research supported by CNRS, the HFSP program and the Eu-
ropean Community.
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B.K. Andrásfalvy, J.C. Magee, J. Neurosci. 21, 9151 (2001)
29. M. London, I. Segev, Nature Neurosci. 4, 853 (2001)
30. S.R. Williams, G.J. Stuart, Science 295, 1907 (2002)


